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Most of these effects would tend to destroy the 
necessary plane wave conditions and reduce the fringe 
visibility, and in certain cases actually alter the fringe 
separation. One approximation that can be made is to 
assume that all the effects that would destroy the Pen- 
delISsung would merely add to a monotonic back- 
ground similar to that of the Darwin curve from a thick 
crystal. By trial and error we have combined the con- 
voluted curve of Fig. 7 with a monotonic Darwin curve 
to get the best agreement with our observations. Fig. 8 
gives the curve for a ratio of Darwin to Pendellrsung 
of about 10: 1. The solid curve represents the sum of 
the two functions and the monotonic dashed curve 
is the tail of a Darwin thick crystal curve. The points 
are the experimental values. The agreement between 
observation and the solid curve is quite good. 

In addition to the shape of the fringes we also 
measured the mean fringe separation. To the precision 
with which this value can be determined, we can safely 
neglect unity compared to ~/,2 in equation (17) and have 
the simple relation between fringe separation f and 
thickness d 

f =  Ao/d. (23) 

In Fig. 9 we give the experimentally observed separa- 
tions vs thickness as well as the relationship predicted 
by equation (23) with a value of A0 =25.6/~m calcul- 
ated from the measured F(333) of 5"9. 

The scatter is quite large but the data points lie 
more or less on a straight line tangential to the theory 
curve at about 18/tm. The deviation for small thick- 
ness could possibly be attributed to bending for which 
the thinner regions would be most sensitive. The agree- 
ment with theory is not too satisfactory, but is probably 
within the rather large uncertainty of the measurements. 

Conclusions 

Our experiment has verified the existence of the Pen- 
dellrsung phenomena in the case of Bragg reflection 
from the surface of a thin crystal. This type of Pendel- 
18sung involves the interference of wave fields on the 

same branch of the dispersion surface and as such is 
more within the framework of a plane wave, rather 
than a spherical wave phenomenon. 

We have pointed out that an asymmetrical reflection 
from a perfect crystal has the effect of increasing the 
lateral coherence of an X-ray beam. By this we mean 
that asymmetric reflection can produce a beam whose 
lateral width for a given angular divergence is several 
orders of magnitude larger than could be obtained by 
isolating a bundle of that same divergence from a point 
source of X-rays. The observation of the Pendellrsung 
fringes is an implicit verification that such enhance- 
ment of lateral width does indeed take place. 

We wish to thank T.C. Madden of the Bell Tele- 
phone Laboratories for providing the silicon wafers 
and Dr P. Ho of Cornell who programmed the com- 
puter calculations. 
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Reciprocity Theorem in Optics and its Application to X-ray Diffraction Topographs 
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The reciprocity theorem is applied to X-ray diffraction topographs. The intensity distribution of a 
traverse-type topograph is obtained by knowing the integrated intensity of the section-type topograph 
which would be produced with the same crystal by X-rays emitted from a source located virtually at 
the point concerned. This relation holds in general irrespective of the shape, absorption and distortion 
of the crystal and the polarization of X-rays. 

Introduction namely section and traverse topographs. They are most 
fundamental in transmission diffraction topography. 

This paper describes a relation between two kinds of The experimental procedures oftakingthesetopographs 
X-ray diffraction topograph of transmission type; are described by Lang (1958, 1959) and Kato & Lang 
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(1959). In a theoretical paper on the Pendell6sung 
phenomena, which were originally predicted by Ewald 
(1916a, b; 1917) on the basis of his theory of crystal 
optics, the present author has shown the following 
relation for non-absorbing perfect crystals (Kato, 
1961b). The intensity at a point of the traverse topo- 
graph can be given by the spatially integrated intensity 
of a section topograph which would be obtained with 
X-rays emitted from a virtual source located at the 
point concerned. The basic idea was to use the recip- 
rocity in optics although it was not explicitly mentioned 
in the previous paper. 

The reciprocity theorem, which had been established 
in optics by Lorentz (1905), was first introduced into 
X-ray diffraction problems by yon Laue (1935). His 
application to the Kossel lines is one of the most ele- 
gant in dynamical diffraction theories. The theorem is 
now applied to the diffraction topographs and it is 
shown that the above mentioned relation between the 
two types of topograph does hold generally for crys- 
tals of any shape, absorption and distortion, and X-ray 
polarization*. 

The application of the reciprocity theorem 

The theorem is described in a clear form in von Laue's 
(1935) paper as follows, a slight modification in the 
presentation being made by the present author. When 
a light source having a direction h~ of polarization and 
located at Pa excites a current J~).v2 at P2 in a direc- 
tion h2, let us assume that a light source of the same 
strength and of the direction h2 of polarization, located 
at P2, excites a current I(2> at Pl, in the direction ° h l , P l  
hi. In terms of the field vectors and current vectors 
thus defined, the theorem states that 

j m  -_ ]a) (I) h2,P2 °hl,P1 

and no other component of current is excited at P1, 
except in the direction hi. 

In Laue's treatment of Kossel lines, the source is 
located inside the crystal so that the crystal surround- 
ing the source point should be assumed to be non- 
absorbing. In the present problem, however, since both 
the source and the observation point are outside the 
crystal, absorption can be considered. As in Laue's 
treatment, the currents at the points P1 and P2 are 
made of only the displacement current (1/4n)OD/Bt. 
Since, in addition, a monochromatic oscillating field 
is concerned, equation (1) is equivalent to the equation 

_ n(2) (2) 
D P2 - - - - , , 1 . , . 1  • 

The suffixes have the same meanings as in equation (1). As 
mentioned by Laue, the optical distance measured from 
P1 to P2 is the same as that measured from P2 to P~. 

* The author  recalls a conversat ion with Professor S.Takagi  
on this problem in 1963. He then ment ioned a possible p roof  
based on his dynamical  theory for distorted crystals (1962) 
and independently the idea presented here had occurred to 
the present author.  

First we shall consider a real experiment. The shape, 
absorbing power etc. of the crystal are not specified. 
The X-ray source is assumed to be a source of spherical 
waves (Kato, 1961a) and located at P1 in vacuum 
(Fig. l). The observation point P2 is a point on a re- 
cording photographic plate. Between the source and 
the observation point, a diaphragm is placed for elim- 
inating the direct beam PIP2 which has nothing to do 
with the crystal diffraction*. Then, the optical paths 
starting from Pi and arriving at P2 are definitely fixed. 
In general, the paths may be multiple. Since the fol- 
lowing arguments can be applied to any case, we shall 
consider a single path for simplicity. 

X-rays emitted within an infinitesimal solid angle 
will arrive at an infinitesimal unit area normal to 
the wave vector K2 at the observation point P> The 
situation in the usual traverse experiments is equivalent 
to that in the experiment in which the source (as well 
as the diaphragm, if necessary) is moved with a con- 
stant velocity v on a fixed line with the stationary crystal 
and the stationary plate. The total energy I(O passing 
through a unit area of the recording plate at P2 is given 
by 

~ r  

= (c/8~z) ,J~0lD(1)(z)lZF2(z)d~" (3) I (t) 

Here, T is the period for the source to be moved over 
a traverse distance S, Dill(r) is the displacement vector 
(i.e. electric vector) at P2. D (1) may be a function of 
time r. The factor FE(Z) is the cosine of the angle be- 

* We can avoid inserting the d iaphragm in the argument .  
For  this purpose we should assume a source of finite size. 
The arguments  become a little complicated but are essentially 
similar to the present ones. 

h~ P~ 

' e ( o )  

~ x  II / /  
\ \  / __" 

h2 

,,2 p ~  f , ._ ._  Photographic Plate 

Fig. 1. The real experiment of traverse type with the source at 
P1 on the line (0-) and the corresponding virtual experiment 
of section type with the source at Pz. D: the d iaphragm 
which eliminates the direct beam PIP2 or P2PI. hi and hE: 
the direction of polarization. K1 and K2: the wave vector. 
E and A : the entrance and exit points in the real experiment,  
respectively. 
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tween K2(z) and the normal to the plate. In practice, 
be/-'2(1:) can be assumed to be a constant,/-'2. 

Next, we shall consider a virtual experiment in which 
a source of the same strength in the real experiment 
is put at P2 during the period T. X-rays, now, are 
emitted reciprocally from the point P2. Since the source 
is fixed, the diffraction (section) topograph on the line 
a is unchanged during the period T. Thus, provided 
that the traverse distance S is wide enough compared 
with the size of the section topograph produced by the 
virtual source at P2, the total energy E(s~ received on 
the distance S is 

E(s)=(c/8zOT DC2)(a)12Fl(a)da, (4) 

where Fl(a) is the cosine of the angle of the line a and 
the plane normal to the wave vector Kl(tr) of the wave 
arriving at the position Px(a). If we consider the sec- 
tion topograph produced by the direct or Bragg-re- 
flected wave, Fl(a) can be assumed to be a constant 
(F1)0 or (FOg, respectively, with a sufficient accuracy. 

In equation (3), the field strength D(1) is a function 
of time 3, whereas the strength D(2~ of equation (4) 
is a function of position tr. The variables are connected 
through a constant velocity v of traversing as 

d a = v d r .  (5) 

By the reciprocity theorem, we have 

DCI)(z) = D<2)(a) (6) 

when a and z are connected through equation (5). 
From equations (3), (4), (5) and (6) it is concluded that 

I0(ff~ ) = (1/Tv)(I"21I"1)o, gEy2. (7) 

The suffixes 0 and g specify the direct and Bragg- 
reflected waves, respectively. Obviously the factor Tv 
is the traverse distance S. The geometrical factor 

P'e ~ 7 

,'o 
- J__ 

Fig. 2. The conventional procedures for observing the intensity 
of the traverse topograph. Pc, Pc" " " " the sources. E, E •. • • : 
the entrance points. A: the exit point corresponding to the 
observation point Po. to: the depth of the point A with 
respect to the entrance surface. Ko: The wave vector of the 
Bragg-reflected beam. 

(F2/F1)o, g appears because of the difference of the cross 
sections of X-ray beams on the line a and the photo- 
graphic plate. 

Discussion and conclusions 

For a spherical wave, the integrated intensity (or power 
ratio) in the section-type experiment can be defined 
definitely both for the direct and Bragg-reflected waves. 
It is convenient, therefore, to obtain the intensity dis- 
tribudon of the traverse pattern by the use of the rela- 
tion (7) derived by the reciprocity theorem. It is im- 
portant that the theorem can be applied to any kind 
of materials and geometrical conditions. Although 
Fig. 1 illustrates a Laue case, the same arguments can 
be applied also to Bragg cases. 

Here, we shall consider traverse topographs of ab- 
sorbing perfect crystals more in detail, particularly in 
Laue cases. For obtaining the intensity at a point on 
the recording plate in the real experiment (cf  Fig. 2), 
we need to know the integrated power ratio of the sec- 
tion topograph for a virtual experiment where the roles 
of the exit and entrance surfaces are interchanged. The 
integrated power ratio of the section topograph was 
obtained in the exact form based on a spherical wave 
theory (see equation (20) of Kato's (1967) paper). For 
practical purposes we consider wedge-shaped crystals. 
Incidentally, strictly speaking the integrated power 
ratio for wedge-shaped crystals cannot be defined on 
the basis of the plane wave theory. It should be pointed 
out here that the geometrical parameters 70 and y~ ap- 
pearing in the integrated power ratio, equation (20) 
mentioned above, must be referred to the exit surface. 
Further, the distance to used in the formula for specify- 
ing the thickness of the crystal must be taken to be 
the normal distance from the entrance point to the exit 
surface. Thus, in the formula which gives the intensity 
of the traverse (real) experiment, the geometrical par- 
ameters should be referred to the entrance surface of 
the real experiment. In addition, the thickness to must 
be taken to be the normal distance to the entrance 
surface from the exit point, A, corresponding to the 
observation point P0 in the real experiment. 

This result justifies the following conventionally ac- 
cepted considerations in understanding the traverse 
topographs. In practice, the intensity distribution of 
the traverse pattern can be assumed to be a projection 
of the intensity distribution at the exit surface in the 
direction of the vacuum wave vector, Kg, on the re- 
cording plate. The intensity distribution at the exit 
surface is given by the integrated intensity on the basis 
of the plane wave theory for a parallel-sided crystal 
with the same thickness as the depth to of the point 
A on the exit surface. For absorbing parallel-sided 
perfect crystals, actually, it is proved that the spherical 
wave theory and the plane wave theory give the same 
formula for the integrated intensity (Kato, 1967). 

In distorted crystals, also, the integrated intensity 
cannot be defined by the plane wave theory in the strict 
sense. Since, it should be obtained on the basis of the 

A C 2 4 A  - 11 
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spherical wave theory (e.g. Kato, 1964), the relation 
(7) is particularly useful to know the intensity distribu- 
tion of traverse topographs. 
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Specimen Motion Effects in Neutron Diffraction* 
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Observations are reported on two effects of specimen motion upon neutron diffraction processes. These 
include the necessary realignment of a single crystal in maintaining Bragg reflection conditions and the 
shift in the long wavelength cut-off characteristic of the transmission through a polycrystalline sample. 
The observations are compared with those to be expected from an analysis of Doppler and velocity 
compounding effects. 

Introduction 

Among the three forms of radiation commonly used 
in crystal diffraction research, namely X-rays, electrons 
and neutrons, the characteristics of the latter are con- 
venient in demonstrating the dynamical effects of spec- 
imen motion on the diffraction process. This arises be- 
cause the transport velocity of slow neutron radiation 
is of the same order of magnitude as the laboratory 
speeds to which crystal specimens can be accelerated. 
Thus Doppler effects and velocity compounding or 
aberration effects can be expected to be sizable. A 
previous study (ShuU & Gingrich, 1964) has demon- 
strated measurable changes in the polycrystalline dif- 
fraction pattern with specimen motion and the meas- 
ured shifts in the position of the Debye-Scherrer re- 
flections were shown to agree with those expected from 
analysis of the reciprocal lattice construction. 

Additional observations on specimen motion effects 
are supplied in the present report. The present experi- 
mental investigations are of two forms, (1) demonstra- 
tion of the realignment of a single crystal necessitated 
in maintaining Bragg reflection with crystal motion and 
(2) illustration of the shift in the long wavelength cut- 
off edge of the transmission cross section of a poly- 
crystalline specimen. The reported effects are of prac- 
tical usefulness in neutron technology as will be dis- 
cussed. 

* This research was supported by the National Science 
Foundation and forms the basis for undergraduate theses 
submitted by two of us (KRM and JGR) to M.I.T. May 1965. 

Single-crystal realignment in Bragg reflection 

If a single crystal is set in motion, then it is to be 
expected that the crystal must be realigned to maintain 
Bragg reflection of an incident monochromatic neutron 
beam. This is most conveniently analyzed from the 
reciprocal lattice construction diagramed in Fig. 1. In 
this Figure v represents the incident neutron velocity, 
V the crystal velocity, and x the reciprocal lattice vector 
of the diffracting planes. The diagram illustrates the 
case where V and x are collinear, implying that the 
crystal velocity is perpendicular to the Bragg reflecting 
planes. In the crystal frame of reference, the neutron 

I 

Fig. 1. Reciprocal lattice construction illustrating the reorienta- 
tion necessary in maintaining Bragg reflection from a 
moving crystal. The incident neutron velocity is v, the 
crystal velocity is V and the reciprocal lattice vector is '~. 
The dashed line construction corresponds to the moving 
crystal case with a tilt angle ~ of x to keep the reciprocal 
lattice point on the Ewald sphere. 


